

Understanding Coat Colour Test Results

Several genes are involved in the process of creating the complex coat colours and patterns found in domestic cattle.

One of these is the Melanocortin 1 Receptor (MC1R) gene, also called Extension, that controls the production of black (eumelanin) and red (phaeomelanin) pigments. The three alleles (forms) of this gene are:

- <u>Dominant black (E^D)</u> Dominant to the other two alleles and animals with this allele are jet black (solid or spotted).
- <u>Recessive red (e)</u> Two copies of this (e) allele will result in red colour.
- <u>Wild type (E⁺)</u> the ancestral/'wild-type' allele "E⁺" is neutral, producing a black coat in the presence of "E^D", a red coat in the presence of "e" and a variety of colours in E⁺/E⁺ animals, where other genes also influence the pigments produced.

Genotype	Description	Colour
E ^D /E ^D	homozygous dominant black	BLACK
E ^D /E⁺	dominant black/wildtype	BLACK
E ^D /e	dominant black/recessive red	BLACK
E⁺/e	wildtype/recessive red	RED
E ⁺ /E ⁺	homozygous wildtype	Varied*
e/e	e/e homozygous recessive red	

* Depends upon modifier genes.

Mating outcomes (statistically):

	ED	E ^D	E ^D E ^D x E ^D E ^D		ED	E⁺	E ^D E ^D x E ^D E ⁺
ED	BLACK	BLACK	100% progeny will be	E^D	BLACK	BLACK	100% progeny will be
ED	BLACK	BLACK	Black	ED	BLACK	BLACK	black
	ED	е	E ^D e x E ^D e		ED	E+	E ^D e x E ^D E ⁺
ED	BLACK	BLACK	75% progeny will be	ED	BLACK	BLACK	75% progeny will be
е	BLACK	RED	Black, 25% will be Red.	е	BLACK	RED	Black, 25% will be Red.
	E⁺	е	E ^D e x E⁺e		E⁺	е	E⁺e x E⁺e
ED	BLACK	BLACK	50% progeny will be	E+	VARIED	RED	75% progeny will be RED, 25% will vary depending
е	RED	RED	Black, 50% will be Red	e	RED	RED	upon other factors.

NOTE: Other coat colour genes act as modifiers of these base colours adding white spotting patterns, reorganizing the distribution of red and black pigments (Brindle and Agouti) or diluting the pigments (Dun, Charolais dilution and Simmental dilution). For example, the PMEL17_delTTC allele causes dilution coat colours such as dun, silver dun, yellow, and cream based on an interaction with the MC1R gene. This dilution factor is common in multiple breeds including Charolais, Hereford, Highland, Galloway, and Simmental.